

CESM SOCCER CENTER IN MONTREAL TIMBER ENGINEERING CASE STUDY

Jean-Marc Dubois- Director of Business Development

CESM SOCCER CENTER IN MONTREAL

Introduction – Manufacturer View

- City of Montreal architectural design contest
- Saucier-Perrotte Architectes (SPA) contacted Nordic for the feasibility of the project
- Nordic won the bid for providing the product and engineering for the wood structure
- SNC provides support for the design of the beams and validation of the connections

PROJECT LOCATION

ARCHITECTURAL CONCEPT

- •Transformation of an old quarry and an landfill into a major urban park.
- •1000 seat indoor soccer stadium is part of this transformation plan.
- Architectural contest in 2011.

STRUCTURE

SECTOR 1 - BEAMS P1

Section SECTOR 1

Roof loads

-Snow: 2.77kPa

-Dead: 0.93kPa

Roof sectors

SECTOR 1 - BEAMS P1

Initial design parameters:

- Straight beam/ simply supported
- Box girder beam 4000mm x 500mm
- Glulam top and bottom cords
- CLT web.
- All elements glued

DESIGN OF P1 BEAMS

2) CONNEXIONS DESIGN

A: END SECTIONS

- Shear stresses.

- -Maximum shear at support = 1950 kN
- -CLT web optimized.
 - -5 ply End sections
 - -3 ply Central section
- -Stiffners added at critical zones
 - -Ends
 - -Joint in web

Finite element model

SHEAR CAPACITY

SNC+LAVALIN

-One of the difficulties faced with the design of the P1 beam was the various shear strength to be considered:

- Shear strength of glued assembly between glulam plies
- Shear strength of glued assembly between CLT and glulam
- Plane shear of CLT panel

B: CENTRAL SECTION

- Moment stresses.

- -Maximum moment= 35 000 kNm
- -Height of glulam cords optimized for central section. Same used for ends.

C: SUPPORT

- Allow passage of mechanical ducts
- -Reduce shear stress in CLT web
- -Reduce shrinkage effects to be considered in wall envelop

COMPARABLES

- •Moment = 24 000 kNm
- Tension connection designed for 8000 kN
- Internal plates with self tapping screws

COMPARABLES

- •Moment = 1850 kNm
- Internal steel plates with self tapping SFS screws

D: TRANSPORT JOINT

STRUCTURES

- Different type of connexions possible (screws, glued rods, Bertsche system, self-taping stack screws with metal plates, etc
- Nordic contacted suppliers of the differents products
- Choice of the screw system: Best connection for quality-control
 - 2. It is a mechanical system good in every condition.
 - 3. Failure mode in the steel

- Tension connection designed for 10 000 kN
- •Long high capacity screws at a slight angle into the end grain of glulam member (416 screws)
- •Elaborate screw pattern to maximized the number of screws.
- •Embedment of screws to develop full tension capacity of the screws.
- •Hand calculations validated by laboratory tests.

- > Same configuration
- Find a laboratory for the tests

Stuttgart University, Germany Capacity 10 000kN in traction

Fabrication

- > More than 4 000 cubic-meter of wood
- > Separated in 3 zones for production

> The main construction site: Chibougamau

STRUCTURES

STRUCTURES

Installation – November 15th 2013

Installation – December 9th 2013

Flipping the beam upright

ASSEMBLAGE ET REDRESSEMENT DES SECTIONS DE POUTRES

1;150

Lift of beams (80 t)

LEVAGE DE LA POUTRE ASSEMBLÉE

(1) Assembled flat on supports

(2) Beam flipped up vertically

Photo: Jacques Nadeau - Le Devoir

STRUCTURES

CESM

Conclusion and Acknowlegements

- •The CESM soccer stadium is a project that **started with the** willingness of the City of Montreal to create something beautiful in order to revitalise a borough in the heart of town.
- •This desire took shape with the **amazing creativity of SAUCIER PEROTTE architects** who chose wood to express their concept.
- •Then, Nordic Wood Structures (with the help of many) had to build a structure that **respects the level of expectation** of the people who first dreamed it.
- •Now that the project is built, it is possible to confirm that this impressive structure has **pushed the limits of timber construction in North America**.

Conclusion and Acknowledgements

> Thanks to all who participated in this project

- > SNC-Lavalin: Patrick Boutin, Dominic Ouellet, and others
- Nordic Montréal: Florian Lagarde, Mathias Oberholzer, Simon Gallagher, Hubertus Punzman, David Croteau, Jean-Claude Baudry, Fernando Leblanc-C., David Cady, Geneviève Lapierre, Julie Frappier David Croteau
- Chantier Chibougamau: Bernard Gariépy, Denis Cossette, Robert Ménard, Jean-Louis Cassista, Maxim Gauthier, Dave Bouchard, Dany Roy, Carl Lapointe, Emilien Racine, Dominic Lavoie, Jacques Filion and scores of workers that worked day and night
- Construction FGP: Normand Beauchemin, Simon Beauchemin, Guy, Louis-Phillipe, et tous les monteurs qui ont travaillé à l'extérieur au cours d'un des hivers les plus froids depuis longtemps.

STRUCTURES

